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OFDMA Wi-Fi backscatter can significantly improve the communication efficiency and meanwhile maintain ultra-low power
consumption; however, the ground-up reworking on the core mechanism of traditional Wi-Fi system revolutionizes the basis
of many existing Wi-Fi based mechanisms. In this paper, we explore how localization can be realized based on OFDMA
backscatter, where a batch localization mechanism utilizing concurrent communication in the OFDMA backscatter system
is proposed. We present a series of mechanisms to deal with the fundamental change of assumptions brought by the new
paradigm. First, we process signals at the receiver in a finer granularity for signal classification. Then we remove phase
offsets in real time without interrupting the communication. Finally, we propose an extended MUSIC algorithm to improve
accuracy with limited localization information in OFDMA backscatter mechanism. We implement a prototype under the
802.11g framework in WARP, based on which we conduct comprehensive experiments to evaluate our propose mechanism.
Results show that our system can localize 48 tags simultaneously, while achieving average localization errors within 0.49m.
The tag’s power consumption is about 55-81.3µW .
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1 INTRODUCTION
Wi-Fi is widely used in today’s Internet-of-things (IoT) applications as the wireless backhaul; however, in order
to realize the vision of universal deployment of Wi-Fi based IoT systems, the following two issues have to be well
addressed: First, IoT applications are featured by a large number of devices with short bursts of data, while the
random access mechanism adopted by the current Wi-Fi network is unable to support concurrent communications
among IoT devices, which incurs low communication efficiency; second, most of IoT devices are battery-powered,
while the Wi-Fi communication module is power hungry, which incurs the inconvenience of changing the battery.
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Fig. 1. Wi-Fi OFDMA Backscatter System.

The ongoing evolution of Wi-Fi towards next-generation 802.11ax [1, 3, 10, 28] provides an opportunity to
address issue 1. 11ax replaces the random access mechanism with orthogonal frequency division multiple access
(OFDMA), which can significantly improve communication concurrency. In particular, OFDMA can allocate
orthogonal subcarriers to devices, which can then transmit data concurrently due to the orthogonality, instead of
transmitting sequentially as under the random access mechanism. Moreover, 11ax optimizes the energy efficiency
with the target wait time (TWT) scheme, where the devices transmit only at pre-negotiated time slots with access
point (AP) and remain asleep in the rest of the time.

In contrast to the TWT scheme adopting the traditional duty-cycling concept, Wi-Fi backscatter [18, 40, 41] can
address issue 2 by providing a more effective power saving solution, which removes the RF component from the
IoT device and utilizes the excitation signal from regular or dedicated transmitters as carriers. Instead of actively
generating RF signals, the IoT device is only with digital component thus incurs O(µW ) power consumption.
However, the reported Wi-Fi backscatter systems [18, 40, 41] still adopt the random access mechanism in the
MAC layer, and the IoT devices have to perform backscatter communication sequentially.

OFDMA backscatter combines the benefits of high concurrency in OFDMA and ultra-low power consumption
in backscatter, which is a promising technology for ubiquitous deployment of IoT devices in the future. The
architecture of OFDMA backscatter system is illustrated in Fig. 1. The transmitter generates continuous wave
(CW) and also performs control and management functions; the backscatter devices (tags) shift frequency of
the CW to frequency bands of orthogonal subcarriers, modulate the local information and then backscatter the
modulated CW to the receiver. The backscattered signals will be synthesized into complete OFDM bursts at the
receiver and then decoded. We implement and comprehensively evaluate the system, and the results show that
the system can support 48 tags to transmit concurrently, with O(µW ) power consumption.

While promising for large-scale IoT applications requiring ultra-low power consumption, OFDMA backscatter
paradigm revolutionizes the basis of many works based on traditional Wi-Fi platform, among which Wi-Fi
localization can serve as an outstanding case study. Applying existing Wi-Fi localization mechanisms to OFDMA
Wi-Fi backscatter platform is confrontedwith the following challenges: First, existingWi-Fi localization techniques
[19, 29] based on Intel 5300 tool kit [14] leverage channel state information (CSI) from the single transmitter;
however, CSI observed by the receiver as shown in Fig. 1 is the combined information from two different line-
of-sight (LoS) paths at least, i.e. TX-RX and Tags-RX, which makes it more challenging for signal classification.
Second, the phase offset calibration [8, 12, 35] that is necessary for CSI localization requires to interrupt the
communication, which hinders concurrent communication among IoT tags. Third, current CSI localization
[9, 19, 20, 36] needs information of redundant subcarriers from a single transmitter, but high concurrency in
OFDMA backscatter prefers each tag using a single OFDMA subcarrier.
In this paper, we propose a batch localization mechanism based on OFDMA backscatter. Particularly, our

mechanism can concurrently localize at least 48 tags in batch, in contrast to existing designs [9, 19, 20, 36]
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Fig. 2. Synchronization Mechanism in Wi-Fi OFDMA Backscatter.

utilizing multiple subcarriers to localize a single device. The scheme could significantly improves the localization
efficiency, and especially useful for large-scale IoT applications such as inventory and smart factory, where
there could be a large number of battery-powered sensors needs localization service in real time. Moreover, our
proposed mechanism maintains the ultra-low power consumption of OFDMA backscatter devices and incurs no
interruptions to regular communication functions. Our technical contributions are two-fold:

First, we for the first time present the design of the concurrent localization system based on OFDMA backscatter
(§Section 3). In particular, we develop the OFDM burst processing scheme to separate multi-tag signals for
concurrent CSI collection, where different subcarriers can be utilized to localize corresponding backscatter tags
(§Section 4). We utilize CSI with respect to different antennas and different propagation paths to realize automatic
phase offset elimination, which not only provides accurate AoA measurement but also eliminate redundant
packet transmission for phase offset calibration in existing work [12, 35] (§Section 5). Since limited subcarrier
allocation for each tag leads to lower accuracy, we finally extend traditional MUSIC algorithm by establishing the
virtual antenna array and thus improve the accuracy of AoA calculation (§Section 6). We finally obtain AoAs
with respect to different transceivers and realize concurrent localization (§Section 7).

Second, we implement a prototype of concurrent localization under the 802.11g framework in WARP, based on
which we conduct comprehensive experiments to evaluate our propose mechanism. results show that our system
can achieve average localization errors within 0.49m while the tag consumes 55-81.3µW active power. Further,
our system achieves 50× valid concurrency compared with existing systems.

2 PRELIMINARIES

2.1 OFDMA Backscatter System
We implement concurrent localization based on Wi-Fi OFDMA backscatter systems [42], thus we first highlight
the OFDMA backscatter system, so that the following contents of this paper can be understood.

Wi-Fi backscatter provides a more effective power saving solution for low-power IoT devices. The first Wi-Fi
backscatter system in 802.11b framework is proposed in passive Wi-Fi [18], where the authors realize 11Mbps
transmission with 59.2µW energy consumption. The key design of Wi-Fi backscatter is the frequency shifting
mechanism in tags, where the tag shifts ambient wireless signals from one channel to another channel. Since
backscatter systems can realize frequency shifting operation without the energy-consuming RF component, they
enable low-power communication.

In contrast toWi-Fi backscatter in 802.11b framework, Wi-Fi OFDMA backscatter enhances system concurrency
and capacity. The crux of any OFDMA system is the effective synchronization mechanism. To synchronize the
OFDMA backscatter system, there are three parts in OFDMA backscatter designs as shown in Fig. 2. First, the
802.11g preamble and PHY header are transmitted to synchronize the clock of transmitter and receiver; Second,
excitation signal transmitters produce to-tag frame to synchronize tags and the transmitter. Since the transmitter
and receiver have been synchronized in the first part, we can synchronize the whole system; Third, the transmitter
broadcasts continuous wave (CW) that would be backscattered to different subcarriers by tags. Based on three
steps in Fig. 2, we can coordinate the frequency shift in multiple tags as shown in Fig. 1, which is equivalent to
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assign different subcarriers to different tags. In this way, backscatter signals coming from multiple tags make up
a completed OFDM signal that could be demodulated at the receiver.

2.2 Challenges
Since the lack of strict synchronization mechanism makes OFDMA backscatter unfeasible, the synchronization
designs mentioned above are necessary. However, such a mechanism brings three new challenges to concurrent
localization. This section introduces particular challenges in batch localization systems, so that readers could
focus on certain sections in the following discussions.

Challenge 1: Collecting Feasible CSI.. Existing localization techniques [19–21, 29] localize the target based on
CSI collected by Intel 5300 tool kit [14] which derives 30 CSI measurements for 64 subcarriers from each packet.
To distinguish this kind of CSI from the CSI collected in our system, we define the CSI collected by Intel 5300 tool
kit as packet-level CSI. In the OFDMA backscatter system, as shown in Fig. 2, signals observed by the receiver is
the combined information from many paths. For example, if 48 tags are employed in the system, the receiver
would observe the combined information across 49 different propagation paths which consist of 48 Tags-RX paths
and one TX-RX path. The combination of signals can be observed in symbol domain and frequency domain, where
symbol domain represents different OFDM symbols in the OFDM burst and frequency domain means different
OFDMA subcarriers. In symbol domain, one OFDM burst contains both from-transmitter and from-tag signals
as shown in Fig. 2. Since Intel 5300 tool kit derives packet-level CSI based on the preamble [13, 14] that exactly
comes from the transmitter instead of tags, packet-level CSI cannot be utilized to localize tags. In frequency
domain, one OFDM burst contains backscatter signals of multiple tags as shown in Fig. 1. Since packet-level
CSI can only provide 30 measurements, it cannot be utilized to classify 48 different tags. Therefore, instead of
utilizing existing packet-level CSI directly, it is necessary to process received signals in a finer granularity for the
path classification. Only in this way, we can derive feasible CSI for target localization.

Challenge 2: Eliminating Phase Offsets. As verified in previous experiments [21], phase offsets severely affect
localization performance. In particular, uncalibrated phase offsets would lead to an average 60 degrees error of
AoA calculation, which is not feasible in localization systems. To address challenge 1, we derive fine-grained CSI
of each OFDM symbol. However, in contrast to packet-level CSI, our fine-grained CSI suffers even more from
phase offsets which consist of continuous dynamic phase offset and down conversion phase offset. Continuous
dynamic phase offset could be addressed via the method introduced in [23], we thus focus on discussing why it
is challenging to remove the second type of phase offset without dedicated packet transmission. In particular,
down conversion phase offset is caused by the down conversion step at the receiver. To address this challenge,
it is necessary for prior works [8, 12, 35] to perform phase offset calibration which requires to interrupt the
communication. In particular, ArrayTrack [35] utilizes RF cables to manually measure this phase offset. Since
down conversion phase offset would be reset as a new random value once device initializes, the manual RF
cable calibration is not practical. Meanwhile, Phaser and AWL [8, 12] require special calibration communication
between transceivers, which inevitably interrupts normal communication of the tag. When there are a large
number of tags in OFDMA backscatter systems as shown in Fig. 1, such a calibration scheme means massive
interruptions of communication. Therefore, it is necessary to design a scheme to calibrate or remove down
conversion phase offset without interrupting the communication, which hasn’t been realized by any existing
work.

Challenge 3: Localizing with Limited Information. Caused by OFDMA backscatter mechanisms, limited subcarri-
ers could be assigned to each tag. It is because in OFDMA backscatter systems, multiple subcarriers are assigned
to different tags. Since the amount of subcarriers is constant, with the increase of concurrently localized tags, the
number of subcarriers assigned to each tag decreases. In fact, such a design makes prior localization systems
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Fig. 3. System Overview.

depending on the information of redundant subcarriers unfeasible. For example, RF-Echo [9] and WiTag [20]
derive ToF based on CSI of multiple subcarriers. When OFDMA backscatter systems assign each tag only a single
subcarrier for high concurrency, these systems cannot provide satisfying solution. Another possible scheme
against limited subcarriers is sending massive packets for more CSI measurements [19]. However, frequent
communication is energy-consuming and cannot be satisfied in practical low-power systems. Since a single
CSI measurement is exactly unstable and therefore leads to inaccurate AoA measurements, this challenge is
necessary to be addressed in the batch localization system. However, high concurrency mechanisms limit the
employment of redundant subcarriers while low-power communication mechanisms make continuous massive
packets inoperable. Thus, it is challenging to localize targets accurately with extremely limited information.

3 SYSTEM OVERVIEW
Our system can localize multiple backscatter tags concurrently, which consists of the following four modules
shown in Fig. 3 to address the three challenges mentioned above.

OFDM Burst Processing Module. As discussed in challenge 1, each OFDM symbol contains CSI corresponding to
multiple paths. In particular, the signals of different subcarriers usually come from different tags as shown in
Fig. 1. In addition, each subcarrier signal consists of the from-transmitter part and the from-tag part as shown
in Fig. 2. In this module, we process the OFDM burst and derives CSI based on three different dimensions, i.e.,
spatial dimension, frequency dimension and symbol dimension. Among them, spatial-dimension CSI labeled
with 1○ represents CSI at different antennas, and it could be utilized to remove continuous dynamic phase offset.
Frequency-dimension CSI labeled with 2○ means CSI across different subcarriers, and it could be employed
to separate multi-tag signals for concurrent localization. Symbol-dimension CSI labeled with 3○ means CSI
of different OFDM symbols, and it could be utilized to remove down conversion phase offset (challenge 2) and
realize our extended MUSIC scheme (challenge 3).

Phase Offsets Elimination Module. As described in challenge 2, we must remove phase offsets to enable AoA
measurement. In this module, we utilize spatial-dimension and symbol-dimension CSI to remove these two phase
offsets respectively. We first remove dynamic continuous phase offset based on spatial-dimension CSI as shown
in [23]. Secondly, the basic idea of down conversion phase offset elimination is that we can observe the same
phase offset across different propagation paths. Since symbol-dimension consists of both from-transmitter and
from-tag CSI respectively depicting the channel state of different propagation paths, we can therefore remove
down conversion phase offset. In contrast to previous methods, we for the first time remove phase offsets without
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dedicated packet transmission, which is more important with the rapid rise of connectivity needs from IoT
devices. Besides, since our phase offset elimination module works in real time, extra performance evaluation and
re-calibration processes proposed in previous work [12] are also not necessary.

Extended MUSIC Scheme Module. Since limited subcarriers can be allocated to each tag and there are usually
2 ∼ 3 antennas equipped in COTS devices, we can hardly derive accurate AoA for localization (challenge 3).
To address this challenge, we proposed extended MUSIC scheme consisting of symbol-domain extension and
multi-domain extension. As shown in Fig. 3, we first determine the number of subcarriers assigned to the
localized tag and then perform corresponding extended MUSIC scheme. Symbol-domain extension and multi-
domain extension share the same basic idea, i.e., improving performance by establishing the virtual antenna
array. Mathematically, we extend the dimensions of traditional MUSIC matrix to enable more accurate AoA
measurements. In particular, the OFDM burst processing module provides us with the fine-grained channel state
depiction and about 500× samples of 500 OFDM symbols compared with packet-level CSI. Therefore, we can
utilize symbol-dimension information to extend MUSIC matrix for AoA measurements. Meanwhile, when more
than one subcarriers assigned, we can also employ both symbol-dimension and frequency-dimension information
to further extend MUSIC matrix for more accurate results.

Multi-tag Localization Module. To localize backscatter tags, it is necessary to derive at least two AoAs with re-
spect to different transceivers. In multi-tag localization module, we combine AoAs relative to different transceivers
and then localize the tag. Since backscatter tags can always be indexed by corresponding subcarriers, we can
derive multi-tag position based on frequency-dimension information.

4 OFDM BURST PROCESSING
In this section, we describe in detail how we process the OFDM burst for feasible CSI collection to address
challenge 1. For this purpose, we first analyze advantages of our finer-grained CSI and then show how to derive it
in our system. Since the finer-grained CSI consists of three different dimensions, i.e. spatial dimension, frequency
dimension and symbol dimension, we define it as three-dimension CSI (3D-CSI ) in the following contents of
this paper.

4.1 3D-CSI Analysis
Compared with previous works [9, 12, 19, 20, 35, 36] which employ multiple antennas, subcarriers and packets
for pure performance improvement, we explore the nature of different kinds of CSI and design a more practical
localization system. What we concern in our system are concurrency, energy conservation, communication
compatibility and accuracy. Concurrency represents that we can simultaneously localize multiple tags. Without
concurrent mechanisms, we must schedule multiple tags in sequence to derive feasible CSI [41], which is
considered to be inefficient [7, 16, 17]. Energy conservation represents that we don’t require continuous massive
packets for accurate localization due to inconsistency between continuous massive packets and low-power
designs. Meanwhile, compared with single-packet localization, massive-packet localization will lead to lower
efficiency. Communication compatibility means that we cannot interrupt other devices’ communication while
localizing certain targets or calibrating phase offsets. It is because communication interruption will become more
and more insufferable with the increase of connected IoT devices. Accuracy means we can derive accurate target
position, which is obviously important for any localization system. Now we discuss different CSI dimensions as
follows:

The spatial dimension represents CSI at different antennas. One function of spatial-dimension CSI is to calculate
AoA and then localize multiple tags. As shown in many prior works [8, 12, 19, 29, 35], the antenna array is
essential infrastructure for AoA localization. In addition, spatial-dimension CSI could also be employed to ensure

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 25. Publication date: March 2019.



Batch Localization Based on OFDMA Backscatter • 25:7

Ant. 1

Ant. 2

Tag 1

Tag 2

Tag n

...

¨̈
©©
ªª

¬¬

®®

1. Preamble & PHY Header

¨̈ ©© ªª

¬¬  ®®

2. To-Tag Frame 3.Backscatter Signal

From-Transmitter Signal From-Tag Signal

Ant. 1
Ant. 2

ReceiverTransmitter
TX Antennas

Symbol Dimension 

Frequency
Dimension 

Spatial Dimension

H
⎡

⎢

⎢

⎣

CSI1,pre null CSI1,1 CSI1,2 · · · CSI1,k

CSI2,pre null CSI2,1 CSI2,2 · · · CSI2,k
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CSIn,pre null CSIn,1 CSIn,2 · · · CSIn,k

⎤

⎥

⎥

⎦

Fig. 4. Concurrent CSI Collection.

accuracy, where signals received at different antennas could be utilized to remove continuous dynamic phase
offset.

The frequency dimension represents CSI across different OFDM subcarriers. Since our system assigns different
OFDMA subcarriers to different tags, the ID of subcarriers could be utilized to index corresponding tags. As
we know, there are 48 data subcarriers in Wi-Fi OFDM systems. Therefore, compared with existing localization
methods which can only assign all subcarriers to one certain target, we can assign these subcarriers to 48 targets
and therefore collect multi-tag CSI with 48× efficiency. In this way, we can improve localization concurrency and
maintain at most 48 devices communication compared with existing systems.
The symbol dimension represents CSI of different OFDM symbols, which could be utilized to ensure system

energy conservation, communication compatibility and accuracy. First, as discussed in challenge 1, the synchro-
nization mechanism makes previous packet-level CSI not feasible. However, we regard such a challenge as an
opportunity to solve down conversion phase offset problem (challenge 2). It is because down conversion phase
offset is constant for different propagation paths. Based on symbol dimension information, we can separate
from-transmitter CSI and from-tag CSI, which respectively depict channel states of different propagation paths.
Since we can simultaneously obtain above information based on one single OFDM burst and then remove down
conversion phase offset without extra calibration communication, we realize communication compatibility.
Second, for from-tag signals, we can obtain 500 CSI measurements corresponding to 500 OFDM symbols, which
provides 500× samples compared with prior works. With such fine-grained information, we design the MUSIC
extension scheme to improve localization accuracy without sending continuous massive packets in prior works
[19, 20, 29], we thus ensure energy conservation and accuracy.
From above contents, we can realize the advantages of 3D-CSI. Here we discuss how to obtain such a fine-

grained CSI in our system.

4.2 OFDM Burst Processing
As shown in Fig. 4, we first discuss how to acquire symbol-dimension and frequency-dimension CSI matrix at
one certain antenna. Then the proposed scheme can be directly applied to the other antennas. In particular, we
represent CSI matrix in Fig. 4 as H . According to the basic knowledge of signals and systems, channel response
H (f ) can be derived using the following equation, H (f ) = Sr (f )/St (f ), where Sr (f ) and St (f ) are respectively
frequency-domain descriptions of received signals and transmitted signals. For matrix calculation, we have
H = Sr ./St , where Sr ./St denotes element-by-element division of matrix Sr and St . Since symbol-dimension
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CSI contains three different parts, we calculate them independently. Especially, we represent H as a block matrix
[Hpre Hnull Hback ], where Hpre , Hnull and Hback denote CSI of the preamble, to-tag frame and backscatter
signals respectively. To calculate this block matrix, we have

H = [Hpre Hnull Hback ] = [Sprerx Snullrx Sbackrx ]./[Spretx Snulltx Sbacktaд ], (1)

where Sprerx , Snullrx and Sbackrx respectively represent the preamble, to-tag frame and backscatter signals at the
receiver while Spretx , Snulltx and Sbacktaд respectively denote these three parts at the transmitter or tags. Among these
variables, since the to-tag frame is to coordinate the frequency shift in multiple backscatter tags, they are ignored.

Now we show how to obtain Sprerx , Sbackrx , Spretx and Sbacktaд in our system. First, since the preamble and backscatter
signals are captured by the receiver, we can acquire Sprerx and Sbackrx via baseband processing in WARP boards.
Second, in regular OFDM systems, the transmitter preamble Spretx is known in advance, which is utilized to
synchronize the clocks of the transmitter and receiver. Therefore, what we should consider here is how to obtain
Sbacktaд , which denotes communication information of backscatter signals and is unpredictable. To decode Sbacktaд ,
the most challenge is that there is an unknown phase offset of received backscatter signals, which is caused
by unknown channel state. Consequently, we can utilize known information called tag-to-receiver preamble
to estimate channel state and then decode backscatter signals with estimated results. In particular, tags embed
tag-to-receiver preamble before communication symbols. When the receiver captures backscatter signals, it first
estimate channel state with the known tag-to-receiver preamble and then decodes communication symbols. In
this way, we can acquire all essential matrices to calculate H . To be stressed that despite the same words utilized,
above phase offsets calibration is one necessary communication process and is not equivalent to the phase offsets
calibration introduced in challenge 2. Finally, we process received OFDM signals at different antennas based on
the same method and thus derive 3D-CSI. In the following contents of this paper, we employ C(m,n,k) to denote
3D-CSI, wherem, n and k respectively represent the index of antenna, subcarrier and OFDM symbol. Specifically,
C(m,n,pre) denotes CSI of the transmitter preamble.
In contrast, according to the description in CSI tools [13], packet-level CSI comes from the preamble of the

whole OFDM burst, i.e., from-transmitter preamble. In reality, the tag-to-receiver preamble is special in OFDMA
backscatter systems and cannot be processed by off-the-shelf CSI tools. Since packet-level CSI only depicts
channel state between the transmitter and receiver, it cannot be utilized to localize backscatter tags, which is
verified in our experiments in Fig. 11a.

Remarks: Section 4 introduces the advantage of our 3D-CSI, where we can ensure concurrency, energy conser-
vation, communication compatibility and accuracy at the same time. Then we process OFDM burst to derive
3D-CSI in OFDMA backscatter systems. The application of OFDMA backscatter in localization systems brings
significant promotion to concurrency without nearly performance degradation in other aspects for the following
reason. In contrast to OFDM assigning all subcarriers to one single device, OFDMA assigns multiple subcarriers
to different devices for concurrent connectivities. Consequently, with multiple devices connected simultaneously,
communication capacity of one certain device decreases. However, IoT applications are featured by a large
number of devices with short bursts of data, which makes communication capacity of each device less important.
Therefore, our system can improve localization concurrency without nearly performance degradation.

5 PHASE OFFSET ELIMINATION
The OFDM burst processing module proposed in previous section allows us to acquire 3D-CSI. However, in
contrast to packet-level CSI, 3D-CSI suffers even more from phase offsets as discussed in challenge 2. In Fig. 5,
there are two kinds of phase offsets consisting of continuous dynamic phase offset and down conversion phase
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(b) Down conversion phase offset
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Fig. 5. Phase offset elimination.

offset. This section reveals the root reason for each phase offset and removes phase offsets in real time without
previous calibration.
We first represent the phase angle of C(m,n,k) utilizing φm,n,k = angle (C(m,n,k)), which consists of three

parts as follows:

φm,n,k = φexm,n,k + φ
co
m,n,k + φ

down
m,n , (2)

where φexm,n,k denotes the exact phase angle, φcom,n,k means continuous dynamic phase angle and φdown
m,n means

down conversion phase angle. Moreover, φdown
m,n does not change with the time [8, 12] while the other variables

are time-varying.

5.1 Continuous Dynamic Phase Offset
As shown in Fig. 5a, we can observe continuous dynamic phase angles at each antenna, which come from the
residual frequency offset. In particular, the slopes of phase angles at different antennas are exactly the same
i.e., φcom1,n,k

≡ φcom2,n,k
, ∀m1,m2. In this way, we can remove continuous dynamic phase offset by calculating

phase difference between consecutive antennas and obtain φ∆m,n,k = φm2,n,k − φm1,n,k = [φexm2,n,k
− φexm1,n,k

] +

[φdown
m2,n −φdown

m1,n ]. For simplification, we utilize φex
∆m,n,k and φdown

∆m,n to respectively represent exact phase difference
and down conversion phase offsets between consecutive antennas, where φex

∆m,n,k = φexm2,n,k
− φexm1,n,k

and
φdown
∆m,n = φdown

m2,n − φdown
m1,n . We thus have

φ∆m,n,k = φex∆m,n,k + φ
down
∆m,n . (3)

Continuous dynamic phase offset can be removed without interrupting regular AoA calculation. Review the
process of AoA calculation in Fig. 6. The basic idea is when the signals arrive at the antenna array, we can observe
a corresponding phase shift at consecutive antennas. Since the distance between the receiver and target is much
longer than inter-distance of the antenna array, we can regard propagation paths between target and different
antennas as a series of parallel lines. Therefore, in Fig. 6, based on geometric knowledge, we can observe an
extra flight distance of the signal at antenna 2 labeled with the red line. It could be written as dsin(θ ), where d is
the distance between consecutive antennas and θ is AoA. Then, according to principle of communication, we
have corresponding phase shift −2π × dsin(θ ) × f /c , where f is the frequency of the signal and c is the speed of
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light. Recall the definition of φex
∆m,n,k in Eq. 3, which denotes exact phase angle difference between consecutive

antennas caused by extra distance dsin(θ ). Since d is known in advance, we can derive AoA as follows:

θ (n,k) = asin(−
c × φex

∆m,n,k

2πd f ), (4)

whereφex
∆m,n,k is necessary to derive AoA and is alsomaintained after continuous dynamic phase offset elimination.

However, by subtracting the phase angle of one antenna from the other antenna, we can just obtain φ∆m,n,k in
Eq. 3, which consists of two compoments. Between them, φex

∆m,n,k is what we want for AoA calculation while
φdown
∆m,n is an unknown phase offset caused by down conversion step. In reality, since we can just obtain φ∆m,n,k

without any other information about its two compoments, without previous calibration, prior works cannot
obtain φex

∆m,n,k for AoA calculation. Especially, prior experiments [12] show that down conversion phase offset
might be larger than exact phase difference and leads to an average 60 degrees error of AoA calculation. To
address this problem, we now discuss how to remove down conversion phase offsets.

5.2 Down Conversion Phase Offset
Fig. 5b shows phase difference between consecutive antennas, where the blue line denotes phase differenceφ∆m,n,k
before down conversion phase offset elimination and the red line denotes exact phase difference φex

∆m,n,k . We can
observe a phase offset φdown

∆m,n between two lines caused by down conversion steps. Though down conversion
phase offset doesn’t change with the time, it could be reset as a new value once device initializes. We conduct 500
experiments to verify this features and Fig. 5c shows the distribution of down conversion phase offsets, where
we can see down conversion phase offsets are exactly random values.

Since down conversion phase offset is an unpredictable value and makes AoA measurement available, existing
systems [12] must first calibrate it with dedicated packet transmission. In this section, we propose how to
dynamically remove down conversion phase offset without dedicated packet transmission. As shown in Fig. 7,
each OFDM burst consists of TX-RX and Tag-RX sub-signals (Part C). For CSI C(m,n,pre) of the transmitter’s
preamble, we can also utilizeφm,n,pre = angle (C(m,n,pre)) to denote its phase angle. Calculating phase difference
of C(m,n,pre) between consecutive antennas (Part B), we have

φ∆m,n,pre = φex∆m,n,pre + φ
down
∆m,n,pre . (5)

where φex∆m,n,pre denotes exact phase difference (Purple area in part D) and φdown
∆m,n,pre denotes down conversion

phase offset (Gray area in part D). As discussed above, since φdown
∆m,n,pre is constant for different paths, we have

φdown
∆m,n,pre ≡ φdown

∆m,n . By subtracting φ∆m,n,pre in Eq. 5 from φ∆m,n,k in Eq. 3, we have φr elative
∆m,n,k = φ∆m,n,k −

φ∆m,n,pre = φex
∆m,n,k − φex∆m,n,pre (Part E), where φ

r elative
∆m,n,k denotes the relative phase offsets of nth subcarrier
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and kth symbol. From this equation, we can observe that φr elative
∆m,n,k is composed of φex

∆m,n,k (Blue area in part E)
and φex∆m,n,pre (Purple area in part E), which are corresponding to AoAs of the tag and transmitter respectively.
Since position of the transmitter is usually constant and known during localization, we can acquire AoA of the
transmitter in advance to determine φex∆m,n,pre and therefore derive φex

∆m,n,k using

φex∆m,n,k = φr elative∆m,n,k + φ
ex
∆m,n,pre . (6)

Remarks: Section 5 clarifies how to utilize the symbol-dimension information to extract the CSI from different
targets and realize the down conversion phase offset elimination without the communication interference. In
this section, our system shows three advantages compared with prior works [8, 12, 35]. First, since previous
works try to calibrate phase offsets instead of removing it directly like our scheme, they might introduce an
extra calibrating error. Second, previous works require special calibration communication, for example, the
transmitter sends a message to the receiver to calibrate phase offsets. During their calibration process, multi-tag
communication and localization are terminated. In contrast, since the OFDM burst contains both from-transmitter
and from-tag signals in our system, we can remove phase offsets while maintaining normal communication and
localization. Third, interrupted by environment noise, calibrated results might be inaccurate and re-calibration is
necessary to address this problem. Since previous calibration methods cannot work in real time, they request extra
performance evaluation to judge calibrated accuracy. In contrast, our system removes phase offsets dynamically,
which is more practical and robust.

6 EXTENDED MUSIC SCHEME
The phase offset elimination introduced in previous section allows us to remove continuous dynamic phase
offset and down conversion phase offset without calibration. To localize targets, recently proposed SpotFi [19]
derives accurate AoA based on multiple subcarriers and packets. However, as discussed in challenge 3, allocated
subcarriers for each target are usually limited in OFDMA backscatter systems and numerous packets would
consume much energy. In the following contents, we will first formulate our math model and then reveal why
traditional MUSIC schemes and SpotFi cannot provide satisfactory accuracy. Finally, we introduce our extended
MUSIC scheme in detail.
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6.1 Derive AoA of Tags with Limited Information
As shown in Fig. 3, since we perform different extended MUSIC schemes based on the number of subcarriers
assigned, we need to establish mapping relationships between tags and subcarriers. For this purpose, we define
the subcarrier set of tag T as FT , which includes all subcarriers assigned to tag T . For example, supposing that
subcarriers #1, #4, #6 are assigned to the tag #2, we have F2 = {1, 4, 6}. Then we count the elements of each FT
and determine corresponding extended MUSIC scheme.

To derive AoA of tags, we here formulate our math model. Since multiple tags share the same scheme for AoA
calculation based on respective subcarrier set, we introduce our extended MUSIC scheme by just discussing a
single tag. For each subcarrier, supposing that there are L paths arriving at the receiver, we can observe x1, x2, ...,
xm atm different antennas, which contains the signals coming from L paths. Meanwhile, as shown in Fig. 6, there
is a fixed phase difference φex between consecutive antennas. Since signals propagating across different paths
arrive at the receiver with different AoAs, we utilize φexl to denote this fixed phase difference corresponding to
the AoA of l th path. If all signals of L paths arriving at the first antenna could be expressed as [s1, s2, ..., sL]T , we
can utilize

[
s1e

φex1 , s2e
φex2 , ..., sLe

φexL
]T to represent the signals at the second antenna. In this way, corresponding

signals at themth antenna could be denoted by
[
s1e

(m−1)φex1 , s2e
(m−1)φex2 , ..., sLe

(m−1)φexL
]T . Since received signals

xm observed at themth antenna is the combination of multipath signals, we have


x1
x2
...
xm


=


1 1 · · · 1

eφ
ex
1 eφ

ex
2 · · · eφ

ex
L

...
...

. . .
...

e(m−1)φex1 e(m−1)φex2 · · · e(m−1)φexL



s1
s2
...
sL


+


n1
n2
...

nm


, (7)

where nm denote noise at themth antenna while the other variables have been defined. For simplification, we
can write Eq. 7 as

X = AS + N, (8)

where X denotes the received signals matrix, A is the steering matrix, S represents propagation signals of L paths
and N is the noise matrix. Especially, each column in the steering matrix A is defined as the steering vector that
could be written as

®a(θ ) = [1,Φ(θ ), ...,Φ(θ )m−1]T , (9)

where Φ(θ ) = eφ
ex
= e−j2πdsin(θ )f /c denotes the phase difference between consecutive antennas. Equation. 8

is the basic expression of MUSIC, which is first proposed in 1986 [27] and widely employed in recent years
[12, 19, 29, 35]. The function of MUSIC is to calculate ®a with the only knowledge about X. Since MUSIC is a
common algorithm, we don’t discuss its principle in detail here. Instead, we just reveal why MUSIC cannot
provide satisfactory accuracy by analyzing how it works. In particular, to find steering vectors ®a, we first calculate
the eigenvectors of XX∗ corresponding to the near-zero eigenvalues, and then compute the steering vectors orthogonal
to these eigenvectors. In reality, for M × 1 matrix X, we can obtain M × M matrix XX∗. When M is small, the
eigenvectors of XX∗ is also in low dimension and at mostM − 1 eigenvectors could be found corresponding to
near-zero eigenvalues. Due to limited number and low dimension, it is difficult to find accurate steering vectors.
SinceM denotes the number of antennas and limited antennas could be employed in practical systems, we can
see why MUSIC cannot provide satisfactory accuracy.

To address this challenge, SpotFi [19] utilizesmultiple subcarriers and packets for accurate localization. However,
in OFDMA backscatter systems, multiple subcarriers are assigned to different backscatter tags for concurrent
localization while massive packets would lead to insufferable energy consumption and lower localization efficiency.
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Therefore, we here propose extended MUSIC schemes, which consist of symbol-domain extension and multi-
domain extension. In particular, symbol-domain extension utilizes symbol-dimension CSI to extend the dimension
of X while multi-domain extension utilizes both symbol-dimension and frequency-dimension CSI. Since symbol-
domain extension could be regarded as a specific multi-domain extension where just one subcarrier is available,
we first introduce symbol-domain extension and then multi-domain extension.

6.2 Symbol-domain Extension
The basic idea of symbol-domain extension is to extend the matrix dimension utilizing 3D-CSI C(m,n,k). In
particular, as shown in Fig. 8, symbol-domain extension scheme consists of four phases as follows. Here we
discuss each phase in detail.

6.2.1 3D-CSI Reconstruction. As discussed in §Section 5, C(m,n,k) is not accurate for AoA calculation due to
phase offsets, thus we should reconstruct 3D-CSI based on the exact phase offset φex

∆m,n,k obtained in Eq. 6. From
Eq. 4, we can observe that AoA calculation just depends on the phase difference between consecutive antennas.
In this way, we can maintain accurate phase difference utilizing the following equation:

X (m,n,k) = C(1,n,k)e(m−1)φex
∆m,n,k , (10)

where X (m,n,k) is reconstructed 3D-CSI. For the nth subcarrier, X (m, ·,k) is a M × K matrix, where M = 2,
K = 500 in our system. In contrast, prior works utilize packet-level CSI to localize targets, where they can derive
at mostM ×N CSI matrix from each packet. Thus, we can represent packet-level CSI as Xpacket (m,n). In OFDMA
backscatter localization, subcarriers assigned to one certain tag are limited, which makes multi-subcarrier CSI
unavailable. For one single subcarrier, Xpacket (m, ·) is reduced to a 2 × 1 matrix. In contrast, our fine-grained CSI
can provide a 2 × 500 matrix X (m, ·,k), which makes extended MUSIC scheme possible. Here, we show how to
extend the dimension of X (m,n,k)X ∗(m,n,k) to improve the performance. In particular, supposing that we want
to extend the number of rows with P times as shown in Fig. 8, we can utilize a P-size slide window to generate
symbol-domain extension matrix, denoted by Xmusic

n (i, j), where i is the index of the virtual antenna and j is
start symbol of the slide window. For a given P , we can finally obtain aMP × (K − P + 1) matrix Xmusic

n (i, j). In
the following contents, we will introduce how to generate such a matrix.

6.2.2 Virtual Antenna Array. To generate Xmusic
n (i, j) mentioned, we first establish the virtual antenna array. As

shown in Fig. 8, the basic idea is to pick CSI at different antennas in turn and then put it into a new matrix. For
example, we first select X (1,n, 1) and set it as the first antenna while setting X (2,n, 1) as the second antenna.
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Then we simulate the 3th and 4th virtual antennas utilizing X (1,n, 2) and X (2,n, 2) respectively. And so on, for
remaining X (m,n,k) in the current slide window. Mathematically, we have

Xmusic
n (i, 1) =


X (1,n, i+12 ), i = 2p − 1

X (2,n, i2 ), i = 2p
, p ∈ Z and p < P, (11)

where p denotes the current index. In this way, when the start pointer of the slide window moves to the jth
symbol, we can summarize the relation between Xmusic

n (i, j) and X (m,n,k) as follows:

Xmusic
n (i, j) =


X (1,n, i+2j−12 ), i = 2p − 1

X (2,n, i+2j−22 ), i = 2p
, p ∈ Z and p < P . (12)

According to this equation, we can acquire one 2P × (K − P + 1) matrix, where 2P denotes the number of virtual
antennas while (K −P +1) denotes the number of samples. However, such aXmusic

n (i, j) cannot be directly utilized
for AoA calculation. It is because we can just ensure that partial phase differences between consecutive virtual
antennas are exactly correct. In particular, based on Eq. 10, we can just ensure accurate phase offset between
X (1,n,k) and X (2,n,k) while the one between X (2,n,k) and X (1,n,k + 1) is inaccurate. Then we introduce how
to revise this inaccurate phase difference.

6.2.3 Phase Offset Revision. We employ an interpolation method to address this problem. The basic idea is to
revise inaccurate phase difference utilizing adjacent accurate values. For example, for continuous 4 antennas
in Fig. 8, we can employ { Xmusic

n (1, j) ,Xmusic
n (2, j) ,Xmusic

n (3, j) ,Xmusic
n (4, j) } to represent them. According

to previous discussion, we know that phase difference between Xmusic
n (2, j) and Xmusic

n (3, j) is not accurate,
denoted by φ∆23. In contrast, φ∆12 and φ∆34 are accurate, since they both come from the phase difference between
X (1,n,k) and X (2,n,k). Therefore, we can employ the mean value of φ∆12 and φ∆34 to represent φ∆23, where
φ∆23 = (φ∆12 + φ∆34)/2. In this way, we can obtain a modified Xmusic

n (i, j) to enable the MUSIC algorithm.

6.2.4 Symbol-domain Matrix for MUSIC.. Previous processes allow us to generate the 2P × (K − P + 1) matrix
Xmusic
n (i, j) to enable the MUSIC algorithm. Since Xmusic

n (i, j)Xmusic∗
n (i, j) is one 2P × 2P matrix, compared

with 2 × 2 matrix Xpacket (m, ·)X
∗
packet (m, ·), the steering vectors calculation suffers less from noise. Meanwhile,

since we establish 2P virtual antennas here, the steering vector can be written as ®a(θ ) = [1,Φ(θ ), ...,Φ(θ )2P−1]T
according to Eq. 9.

6.3 Multi-domain Extension
In OFDMA backscatter systems, it’s also possible to assign a group of subcarriers to one certain tag. For feasible
multi-subcarrier CSI, SpotFi [19] propose the ToF sanitization algorithm to remove packet detection delay [29]
via a linear fit of unwrapped multi-subcarrier phase angles. Since the accuracy of linear fit relies on the number
of samples, it is difficult to obtain accurate results with limited subcarriers. In this section, we first reveal that the
ToF sanitization algorithm is not necessary and cannot improve performance of localization systems. Then we
show how to simultaneously perform SpotFi and our symbol-domain extension methods based on discontinuous
allocated sub-carriers for more accurate AoA measurement.

6.3.1 ToF Sanitization Algorithm. Here we introduce the root reason why ToF sanitization proposed by SpotFi
is not necessary in localization systems. Supposing that there are L-path signals arriving at receiver, ToF of l th
path is denoted by tl while packet detection delay is represented by tpacket . The receiver observes sr (n) of nth
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subcarrier, which consists of L-path signals with respective attenuation Al and phase shift e−j2π f tl caused by ToF
tl . Besides, there is also an extra phase offset e−j2π f tpacket caused by packet detection delay, thus we have

sr (n) = (
∑L

l=1
Ale

−j2π f tl )e−j2π f tpacket . (13)

For nth subcarrier, its frequency could be denoted by f1 + (n − 1)∆f , where f1 is the frequency of the first
subcarrier and ∆f is the frequency spacing between consecutive subcarriers. Therefore, we can denote the phase
shift of nth subcarrier relative to the first subcarrier as follows:

f (n) = (
∑L

l=1
Ale

−j2π (n−1)∆f tl )︸               ︷︷               ︸
Part A

(e−j2π (n−1)∆f tpacket )︸                   ︷︷                   ︸
Part B

. (14)

Aswe know, the phase angle of complex exponential e−j2π (n−1)∆f tpacket could be denoted byϕ(e−j2π (n−1)∆f tpacket ) =
−j2π (n − 1)∆f tpacket . To remove tpacket , SpotFi tries to deal with the phase shift among different subcarriers
via a linear fit. The basic idea is that they first find the best linear fit of ϕ(f (n)) and then subtract the phase
offset caused by packet detection delay. For example, supposing that n is the independent variable in equation
ϕ(e−j2π (n−1)∆f tpacket ) = −j2π (n − 1)∆f tpacket , we can find the best linear fit with a slope −j2π∆f tpacket . Then
we subtract −j2πn∆f tpacket from −j2π (n − 1)∆f tpacket and therefore remove packet detection delay. However,
we believe such a scheme is not necessary and cannot improve performance of system for the following two
reasons:

First, proposed schemes would simultaneously remove parts of ToF information (i.e., t1, t2, ...tl ) and make ToF
inaccurate, which has been verified in their own experiments [19]. The reason is that part A in Eq. 14 also contains
linear phase angle components. One simple example is that when there is just one path signal, f (n) could be
represented as A1e

−j2π (n−1)∆f (t1+tpacket ) and the corresponding phase angle is ϕ(n) = −j2π (n − 1)∆f (t1 + tpacket ).
According to the ToF sanitization algorithm, we can obtain the best linear fit −j2π∆f (t1 + tpacket ) and therefore
remove both t1 and tpacket . Since ToF information t1 has been removed, the ToF sanitization algorithm even
leads to worse performance. Furthermore, when there are L paths, part A contains L signals with respective
linear change. With all multi-path signals summed, the phase angle is dominant by the strongest signal and show
linear-like result. Consequently, when removing packet detection delay of part B, the ToF sanitization algorithm
still inevitably damage ToF information in part A.
Second, since ToF measured is not accurate, SpotFi just utilizes them to determine the direct path. The basic

idea is that the smallest ToF is corresponding to the direct path. In particular, they remove packet detection delay
in Eq. 14 and have

f ′(n) = (
∑L

l=1
Ale

−j2π (n−1)∆f tl )e−φr esidual =
∑L

l=1
Ale

−j2π (n−1)∆f tl−φr esidual , (15)
where φr esidual is the residual phase offset since SpotFi can never obtain the exact packet time delay. Then SpotFi
employs the MUSIC scheme to parse a series of ToF, denoted by {t1 + tr esidual , t2 + tr esidual , ..., tL + tr esidual },
where we can find the direct path t1 by finding the smallest ToF. In reality, without ToF sanitization algorithm,
we can also obtain such a group of ToF, denoted by {t1 + tpacket , t2 + tpacket , ..., tL + tpacket }, where we still can
find the direct path based on the smallest ToF. In conclusion, the ToF sanitization algorithm is not necessary for
clear multi-subcarrier information.

6.3.2 Multi-domain Extension for MUSIC.. In previous section, we show how to establish the symbol-domain
extension matrix for MUSIC algorithm. In reality, when a group of subcarriers are assigned to one certain tag,
we can utilize both frequency-dimension and symbol-dimension CSI for further performance promotion. The
basic idea is to further extend the symbol-domain matrix in Fig. 8 for multi-domain matrix generation. For
this purpose, we first determine subcarrier IDs corresponding to current tag. For example, as shown in Fig. 9,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 25. Publication date: March 2019.



25:16 • X. Tong et al.

#1
Ant 1

Ant 2

Virtual Ant 3

Virtual Ant 4

Ant 1
Ant 2

Virtual Ant 3
Virtual Ant 4

……

#4 #6 #1 #4 #6 Ant 1 Subcarrier 1

……

Ant 1 Subcarrier 4
Ant 1 Subcarrier 6
Ant 2 Subcarrier 1
Ant 2 Subcarrier 4
Ant 2 Subcarrier 6……

Ant 1

Ant 2

Virtual Ant 3

Virtual Ant 4

……

Ant 1

Ant 2

Virtual Ant 3

Virtual Ant 4

……

Subcarrier Index Group Start Symbol Pointer Multi-domain MatrixSubcarrier CSI Group

…
………

……Sym.  1 2 3

……Sym.  1 2 3

Fig. 9. Multi-domain extension.

supposing that subcarriers #1, #4, #6 are assigned to tag #2, we have F2 = {1, 4, 6}. Second, we determine the
current start pointer and select corresponding column in the symbol-domain extension matrix. For example, we
here select the first start symbol pointer of subcarrier #1, i.e., Xmusic

1 (i, 1). Third, for other subcarriers assigned
to the same tag, we perform the second step for all assigned subcarriers and obtain subcarrier CSI group, i.e.,
Xmusic
1 (i, 1),Xmusic

4 (i, 1),Xmusic
6 (i, 1). Finally, we combine different Xmusic

n (i, j) together utilizing matrix fusion
shown in Fig. 9 and therefore obtain the multi-domain extension matrix for MUSIC algorithm.

For MUSIC algorithm, it is necessary to generate steering vector corresponding to the multi-domain extension
matrix. In fact, based on subcarrier group and virtual antennas, the steering vector generation is similar to
SpotFi [19]. In contrast, our scheme doesn’t rely on ToF sanitization algorithm for packet detection delay
elimination, which has been proved unnecessary above. Meanwhile, our MUSIC extension scheme is based on
limited subcarriers and virtual antennas generated by the symbol-domain extension scheme. Our steering vector,
for 2P virtual antennas and N assigned subcarriers, can be written as

®a(θ , τ ) = [ΩT (1, τ ), ...,ΩT (N , τ )︸                      ︷︷                      ︸
Antenna 1

,Φ(θ )ΩT (1, τ ), ...,Φ(θ )ΩT (N , τ )︸                                  ︷︷                                  ︸
Antenna 2

, ...,Φ(θ )2P−1ΩT (1, τ ), ...,Φ(θ )2P−1ΩT (N , τ )︸                                              ︷︷                                              ︸
Virtual Antenna 2P

]T ,

(16)
where ΩT (n, τ ) = e−j2π FT (n)f τ denotes the phase shift caused by different subcarriers while Φ(θ ) (Eq. 9) denotes
that caused by the antenna array. Inside, FT (n) denotes nth element in FT . Therefore, we can determine possible
τ and θ utilizing the MUSIC algorithm introduced by SpotFi.

Remarks: Section 6 first utilizes symbol-dimension CSI to improve localization accuracy under single-subcarrier
scenario and then utilize multi-dimension CSI (i.e. symbol-dimension and frequency-dimension CSI) to further
improve localization accuracy under multi-subcarrier scenario. This section provides us with a new solution
to address the challenge caused by limited antennas, subcarriers and packets. Compared with previous works
which employ multiple antennas, subcarriers and packets for pure performance improvement, we utilize spatial-
dimension CSI for phase offset elimination, frequency-dimension CSI for concurrent localization and symbol-
dimension CSI to avoid massive packets transmission and maintain accuracy. Therefore, our system provides
more practical schemes for concurrent low-power localization systems.
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7 IMPLEMENTATION AND CONCURRENT LOCALIZATION
We utilize WARP v3 boards [6] to implement the transceiver. Our on-tag transmitter implementation refers to
Wi-Fi OFDMA backscatter systems [42]. We utilize some COTS components to realize OFDMA tags by integrating
them on an RF-4 PCB board in Fig. 10a. In particular, HMC190BMS8E SPDT switches are employed to change the
connection state between receiving and backscattering circuits. To realize SSB signal, which is also described
in previous work [40], we use a splitter/combiner BP2U+ [4], ADG902 SPST reflective switch [5] and a printed
transmission line.
We utilize DIGILENT NEXYS4 FPGA development boards [2] to control tags communication while using

Matlab 2016a to realize OFDM burst processing, phase offsets elimination and extended MUSIC schemes. For
every tag localization, at least two AoAs with respect to different receivers are necessary. Since our excitation
signal device (WARP v3 board) is full-duplex, it can act as both the transmitter and receiver without any hardware
change. In this way, we can derive enough AoAs relative to different transceivers with only one pair of WARP v3
boards.

In this paper, we localize targets based on the following method. In particular, we define an error E to denote
the deviation between AoAs that would be observed at each evaluated location and the corresponding AoAs that
were actually observed as follows:

E =
∑TN

T1

∑S

s=1
(θ s (Tn) − θs (Tn))

2, (17)

where there are S receivers and TN tags, θs (Tn) denotes AoA of tag Tn relative to the sth receiver while θ s (Tn)
denotes geometrical AoA of tag Tn at the sth receiver corresponding to evaluated position. Finally, we can
determine tag’s position by finding theminimum E. Since OFDM subcarriers are orthonormal, each tag localization
is independent from the others. Therefore, E defined in Eq. 17 takes all tags into consideration by directly summing
evaluated error of multiple tags.

8 EXPERIMENTS
We implement our design on WARP v3 boards and conduct comprehensive experiments in different scenarios to
evaluate proposed mechanisms. In our system, each DIGILENT NEXYS4 FPGA development board [2] is utilized
to control 4 different backscatter tags. During experiments, we employ 1 ∼ 48 tags (40 tags are shown in Fig. 10b)
to verify system performance. The position of transceivers and tags can be found in Fig. 10c, where the TX-tag
distance is 0 ∼ 6m while the tag-RX distance is 0 ∼ 6m. To localize backscatter tags, each WARP v3 board is
equipped with 2 ∼ 4 antennas. We utilize the carton to build NLoS scenarios as shown in Fig. 10d. For multi-tag
localization, the transmitter broadcasts necessary wireless signals in channel 2.485GHz.

8.1 Necessity of System Designs
We first verify the necessity of our system designs, which consist of three parts corresponding to three challenges.
For each experiment, we conduct 500 measurements and compare the results with our proposed scheme.

8.1.1 Packet-level CSI and 3D-CSI. Now we are going to verify that 3D-CSI is necessary to address challenge 1.
As explained in CSI tools [13], since packet-level CSI exactly comes from the preamble of OFDM bursts, we can
utilize preamble CSI C(m,n,pre) to denote packet-level CSI. As shown in Fig. 11a, we can observe that 80% error
is within 65 degrees for packet-level CSI localization. Here, we analyze why packet-level CSI is unfeasible. Due
to the synchronization mechanism in OFDMA backscatter systems, all OFDM burst preambles come from the
transmitter, which denotes that packet-level CSI can just measure channel state between the transmitter and
receiver. Since such packet-level CSI can just be utilized to localize the transmitter, we can never derive accurate
multi-tag AoAs.
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(a) Experimental devices (b) Experimental environment

7 m

6 m

Door

Legend

Transceiver

Tags

(c) Experimental Layout (d) NLoS Scenario

Fig. 10. Groundtruth of the batch localization system. (a) shows experimental devices, where 24 tags, FPGA and WARP v3
boards are presented; (b) shows environment of our experiment in one 6m × 7m conference room; (c) shows the layout of
tags and transceivers; (d) shows how we build the NLoS scenario.

8.1.2 Phase Offsets Elimination. To address challenge 2, we propose the phase offsets elimination scheme. To
realize the necessity of phase offsets elimination, we localize multiple tags with the same data set, where the only
difference is whether we remove phase offsets. It can be seen in Fig. 11b that error in degrees is much worse when
there is not phase offsets elimination. Thus it is really necessary to remove phase offsets. Similar conclusion has
been drawn by ubicarse [21] in Fig. 9, and the underlying reason is as one kind of noise, phase offsets are so large
that AoA calculation cannot work.

8.1.3 MUSIC and Extended MUSIC. We explain the necessity of the extended MUSIC scheme addressing challenge
3 by comparing the performance of traditional MUSIC and our scheme. As shown in Fig. 11c, our extended
MUSIC scheme realizes half AoA error in degrees compared to the traditional MUSIC scheme. It is because that
with limited antennas, subcarriers and packets, existing MUSIC schemes introduced in Eq. 8 are reduced to pure
AoA calculation in Eq. 4, which is easily interrupted by noise. For example, we can find that the maximum error
is about 120 degrees in contrast to 40 degrees of our extended MUSIC scheme.
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Fig. 11. Necessity of System Designs.
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Fig. 12. Localization & Num. of tags

8.2 Localization Performance
After verifying the necessity of our system designs, we now comprehensively examine performance of the batch
localization system, where the number of backscatter tags, subcarriers and transceivers, experimental scenarios,
energy consumption are well considered. We conduct 10 experiments in each situation. Every experiment
transmits 50 OFDM bursts and each burst contains 500 symbols. We measure AoA and position according to the
information of each OFDM burst.

8.2.1 The Number of Tags. To measure the relation between localization accuracy and the number of tags, we
respectively employ different numbers of backscatter tags and conduct measurements for different scenarios. We
first show how to separate multi-tag AoAs in Fig. 12a, where we plot φex

∆m,n,k (Eq. 6) of different tags. Since φ
ex
∆m,n,k

denotes the exact phase difference relative to different AoAs, we can respectively derive AoA corresponding to
every tag and therefore separate different tags. For distinct exhibition, we just select 4 different tags and plot
φex
∆m,n,k in Fig. 12a, where we can obviously observe that different tags could be separated. Second, we select

different numbers of tags (i.e., 1, 4 ,16 and 48) to perform our concurrent localization method. The purpose of this
experiment is to prove multi-tag localization is feasible in our system. From Fig. 12b, we can observe that with
the increase of localized tags, AoA calculation is not interrupted, where the average errors are respectively 11.10,
13.34, 10.02 and 11.71 degrees, the median (90%) errors are respectively 11.10 (19.38), 10.35 (28.66), 7.25 (26.15)and
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Fig. 13. Localization & Num. of subcarriers
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Fig. 14. Localization & Num. of transceivers

10.81 (22.34) degrees. Thus concurrent localization is feasible and doesn’t significantly influence localization
performance of tags. Third, we utilize derived AoAs to localize multiple tags and therefore obtain localization
results shown in Fig. 12c, where we can observe average errors are respectively 0.49m, 0.52m, 0.45m and 0.50m,
the median (90%) errors are respectively 0.46m (1.03m), 0.54m (1.03m), 0.37m (0.91m) and 0.56m (0.85m).

8.2.2 The Number of Subcarriers. To verify our multi-domain extension scheme, we employ different subcarriers
and conduct measurements for different scenarios. We first assign one certain tag multiple subcarriers and
plot φex

∆m,n,k (Eq. 6) assigned to this tag. As shown in Fig. 13a, different subcarriers have similar φex
∆m,n,k . It is

because that these subcarriers have been assigned to the same tag and are thus corresponding to the same AoA.
Second, we select different numbers of subcarriers (i.e., 1, 2 ,4 and 8) to perform our extended MUSIC method. As
shown in Fig. 13b, with the increase of allocated subcarriers, AoA calculation is improved, where the average
errors are respectively 11.10, 9.68, 7.66 and 7.13 degrees, the median (90%) errors are respectively 11.10 (19.38),
9.34 (17.95), 5.82 (17.18) and 5.41 (17.70) degrees. Third, we utilize derived AoAs to localize the tag and therefore
obtain localization error shown in Fig. 12c, where we can observe average errors are respectively 0.49m, 0.48m,
0.39m and 0.37m, the median (90%) errors are respectively 0.46m (1.03m), 0.43m (1.03m), 0.38m (0.77m) and
0.33m (0.75m).
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Fig. 15. System Comparison.

8.2.3 The Number of Antennas. Since the performance of AoA measurement is dependent on the number of
antennas, we conduct experiments with respect to different numbers of antennas. During experiments, we collect
CSI and eliminate phase offset based on the method introduced in §Section. 5. With the increase of antennas, we
can observe better performance as shown in Fig. 14a, where average errors are respectively 12.48, 8.74 and 6.65
degrees, the median (90%) errors are respectively 12.00 (19.00), 6.60 (19.00) and 6.50 (11.50) degrees.

8.2.4 The Number of Transceivers. In batch localization systems, at least two transceivers are necessary to localize
multiple tags. During our experiments, we employ different numbers of transceivers to realize batch localization.
Since we determine multi-tag position based on AoAs relative to multiple transceivers via Eq. 17, with the
increase of transceivers, we can observe better performance in localization as shown in Fig. 14b, where average
errors are respectively 0.49m, 0.33m, 0.29m and 0.28m, the median (90%) errors are respectively 0.45m (1.03m),
0.30m (0.63m), 0.28m (0.49m) and 0.26m (0.56m).

8.2.5 LoS and NLoS. To verify system performance under different scenarios, we respectively select LoS and NLoS
scenarios to conduct experiments. We conduct measurements for LoS and NLoS scenarios, where average errors
are respectively 11.10 and 18.78 degrees, the median (90%) errors are respectively 10.83 (19.38) and 16.65 (32.41)
degrees.

8.2.6 Energy Consumption. We employ the same tag design asWi-Fi OFDMA backscatter systems [42], where the
overall power consumption of backscatter tag is 55-81.3µW . Here we briefly introduce the energy consumption
which consists of the following three parts. The first part comes from the frequency synthesizer realized by
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All-Digital PLL whose power consumption is 0.47µW /MHz. The second part is the digital part which consumes
17µW . Third, we calculate the power consumption of the backscatter circuit by referring to parameters in the
datasheets of electronic coomponents. For different switching frequency, the power consumption is 36.9-54.4µW .

8.3 Performance Comparison
In this section, we compare our batch localization system with previous methods to verify that we can realize
system accuracy, concurrency, energy conservation and communication compatibility (§Section. 4). For
our scheme, 3D-CSI introduced is available, which is one 2×48×500matrix. As a contrastive scheme, we calibrate
phase offsets utilizing the scheme introduced by Phaser [12] and then localize tags one by one via SpotFi [19].

8.3.1 Accuracy. To verify the accuracy of our system, we conduct 500 experiments to calculate AoA based on
different kinds of CSI and different numbers of subcarriers. During our experiments, single-subcarrier AoA
calculation without 3D-CSI is based on the traditional MUSIC scheme [27] while multi-subcarrier AoA calculation
is based on the scheme introduced in SpotFi. In Fig. 15a, we can observe average errors are respectively 16.63,
12.66, 10.25 and 7.80 degrees, the median (90%) errors are respectively 13.20 (27.05), 11.35 (25.32), 7.00 (26.80)
and 5.05 (17.84) degrees for different kinds of CSI. It denotes that based on one single packet (OFDM burst), we
can achieve higher accuracy than existing systems.

8.3.2 Concurrency and Effeciency. We conduct 500 experiments to examine the concurrency of our system, where
we compare the number of valid localization results in our system with existing works. During our experiments,
we respectively regard AoA calculation with error less than 10, 15, 20 degrees are valid. In Fig. 15b, our system
shows about 50× efficiency than existing systems. There are two points to be discussed here. First, we can observe
a high multiple at the beginning. It is because that existing works must utilize extra communication to calibrate
down conversion phase offset and therefore localize zero tag. Since our system not only removes phase offsets in
real time but also has derived multi-tag position, it can get an infinite multiplier here. Second, since we utilize 48
data subcarriers to localize multiple tags, we can realize 48× concurrency theoretically. In reality, according to
Fig. 15b we can realize about 50-65 times efficiency, which is higher than theoretical 48 times. It is rooted in that
existing methods show lower accuracy due to coarse-grained CSI shown in Fig. 15a, which denotes that we can
derive more valid AoAs and thus realize higher efficiency.

8.3.3 Energy Conservation. Our system does not require continuous massive packets for accuracy and therefore
ensures energy conservation. Instead, we utilize symbol-dimension CSI and develop extended MUSIC scheme to
ensure localization accuracy. During experiments, we first show the phase angle across different packets (OFDM
bursts) and OFDM symbols in Fig. 15c, where we can observe the similar results. This experiment shows that it is
feasible to replace massive-packet CSI with symbol-dimension CSI. Since we can derive 500 symbol-dimension CSI
measurements based on one packet, we ensure energy conservation. Second, we compare energy consumption of
our system and existing schemes by analyzing the results based on different numbers of packets (1, 5, 10 and 30).
As shown in Fig. 15d, existing schemes require about 30 packets to obtain similar performance as our system,
which consumes 30× energy consequently. Moreover, massive-packet localization proposed in previous works
might reduce efficiency further. For example, SpotFi utilizes 10 packets to localize one single tag while our scheme
utilizes one single packet to localize 48 tags. Thus our system can finish about 480 times localization while SpotFi
just finishes one.

8.3.4 Communication Compatibility. Communication compatibility denotes that we do not interrupt other
devices’ communication when localizing certain targets or calibrating phase offset. As shown in Fig. 13, we can
exactly localize multiple tags concurrently. Since available CSI comes from valid communication, we therefore
maintain concurrent communication when localizing certain targets. Moreover, our system removes phase offsets
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dynamically without special calibration process and therefore ensures communication compatibility. To stress
the advantage of our phase offset elimination scheme, we calibrate phase offsets of different OFDM bursts and
then plot the results in Fig. 15e. From this figure, we observe that phase offset calibration result is unsteady,
which means previous work might derive inaccurate calibration results and therefore obtain inaccurate AoA. For
example, in Fig. 15f, false calibration results lead to a higher error in contrast to our real-time calibration.

9 RELATED WORK
Ubiquitous employment of IoT devices stimulates the spring-up of indoor localization techniques. Existing
works leverage diverse technologies for localization including sound [11, 43], visible light [39] and RF [32–
34, 37]. Proposed BatMapper scheme [43] can automatically construct indoor floor plan and realize localization
accuracy within 0.3m and LiTell [39] outperforms BatMapper. While these localization systems can provide
satisfying accuracy, they usually require dedicated energy-consuming sensors installed in targets such as Wi-Fi,
Ultra-wideband (UWB) and Bluetooth chips [32–34, 37] or expensive devices such as mobile phones [11, 39, 43].
However, since IoT devices are usually sensitive to energy, energy-consuming localization sensors limits the
development of location-aware applications.
To enable low-power localization, the most innovative method is to localize targets without any installed

sensors. With fine-grained CSI available [14], recent researches explore the method of device-free localization and
even achieve a better performance than device-based localization [22, 23, 25, 26, 30]. Despite promising accuracy,
device-free localization cannot replace device-based localization for the following reasons: First, device-free
localization relies on wireless signal reflected by targets, which makes it not applicable for devices in small size.
Second, though researches attempt to identify users identities based on people’s gait [31, 38], proposed schemes
cannot be utilized to identify IoT devices, which do not have gait obviously. Third, device-free localization systems
suffer a lot from environment noise and can hardly localize multiple targets.

On the other hand, backscatter technology brings us a new perspective to realize low-power localization, which
provides decimeter-level accuracy while constraining power consumption to less than tens ofmW . RF-Echo [9]
designs an active reflector IC and employs neural networks to estimate ToF. WiTag [20] uses off-the-shelf WiFi
chips to localize low-power backscatter tags. However, these researches just provide schemes to localize backscatter
tags one by one while concurrent localization remains a challenge. As we know, concurrent transmission would
cause collision and make CSI not feasible, thus FreeRider [41] tries to schedule these tags in sequence. Such a
method can be similar to the multiple access scheme in commodity RFID systems [24, 41], which is considered to
be inefficient [7, 16, 17]. To address this problem, several recently proposed works [15, 42] enable concurrent
communication. Despite concurrent communication and CSI collection, existing schemes [9, 20] still cannot be
utilized to localize multiple tags concurrently. It is because these schemes require multi-subcarrier CSI coming
from the same target for ToF estimation, which is no longer available in concurrent localization systems.

Another problem of CSI localization is that AoA calculation also suffers from an unknown phase offset coming
from the down conversion step [8, 12, 21, 35], which leads to inaccurate AoA measurements. To address this
problem, previous works [8, 12, 35] require special calibration communication, performance evaluation and
re-calibration process, which inevitably interrupts communication of multiple tags.
Our work in this paper solves above challenges and differs from prior works in the following ways: 1)

Since previous low-power localization schemes [9, 20] cannot be utilized to localize multiple tags accurately
and concurrently, we utilize OFDMA backscatter technology and propose extended MUSIC schemes to enable
accurate concurrent localization; 2) In contrast to prior works that try to calibrate phase offsets for accurate
localization, our system removes phase offsets in real time without any special calibration process. Thus we
realize higher localization accuracy without interrupting communication of any tag.
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10 CONCLUSION
In this paper, we present how to enable batch localization in OFDMA backscatter. Instead of utilizing multiple
antennas, subcarriers and packets for pure accuracy improvement, we appropriately utilize fine-grained CSI to
enable system concurrency, energy conservation, communication compatibility and accuracy. First, we utilize
frequency-dimension to collect multi-tag CSI concurrently based on OFDMA. Then, we employ spatial-dimension
CSI and symbol-dimension CSI to remove phase offsets in real time. Finally, we perform our extended MUSIC
scheme and localize multiple tags concurrently. Experimental results show that our system can achieve 50× valid
concurrency compared with the existing design. Meanwhile, our system can realize average localization errors
within 0.49m while the tag consumes 55-81.3µW active power.
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